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THE LURE OF NEURAL NETWORK RESEARCH

Thousands of scientists, engineers, and students are now studying, developing, or ap-
plying neural network models to a wide variety of problems concerning both biological
models of brain and behavior and technological models for implementation in government
and industrial applications. Many engineers have been drawn to the field because neural
network researchers have discovered promising approaches to the many types of problems
for which adaptive, massively parallel, fault tolerant solutions are needed, and for which
neural networks will run in real-time when they are realized compactly in specialized hard-
ware. In addition, the most advanced neural network architectures are providing examples
of intelligent systems capable of autonomous learning and skillful performance within com-
plex and noisy environments that are not under strict control. Such examples and future
possibilities have helped to generate a high level of enthusiasm among people working in
the field.

No small amount of this enthusiasm also derives from the fact that many neural network
design principles, mechanisms, and architectures were discovered through analyses of the
human mind and its neural mechanisms. After all, we all have one! What engineer or
scientist would not be tempted by the opportunity to understand better this most personal
possession, the crucible of all our experience, and even get paid to do so?

The very allure of this possibility goes hand-in-hand with the difficulty, and the great-
ness, of the task. The human brain is one of the most complex systems amenable to study
by human scientists. Not surprisingly, the field of neural network research is remarkable
for the diversity and complexity of its subject matter, methods, dialects, and goals.

DISTINCT CRITERIA FOR BIOLOGICAL
AND TECHNOLOGICAL MODELS

In order to find one's bearings and to maintain a high level of sustained productivity in
such a challenging field, it is necessary to carefully distinguish between the very different
criteria that are appropriate for evaluating biological and technological neural network
models. Let me emphasize right away that there is no necessary reason why all studies of
biological intelligence should go technological, or conversely. In fact, an uncritical mixing
of the two goals can lead to intellectual bankruptcy.

To validly advance our understanding of biological intelligence, one must explain and
predict lots of biological data. Typically, there exists one theory in each area of physical
science at any time that explains and predicts more data in a principled and harmonious
way than any other theory. This becomes the theory worthy of further development,
modification, or disconfirmation. Less predictive theories, or theories that are simplified
versions or parts of a deeper theory, do not represent the cutting edge of the science, and
basically are a waste of time.

Although this seems obvious enough, it is not the way that much Artificial Intelligence
has been practiced, and it is not the way that some neural network research has begun
to be practiced. For example, the popular back propagation model contains a non-local
transport of associative learning weights that is not neurobiologically possible; yet back
propagation is starting to be applied by some scientists as a model of neural processes.
This is extraordinary, because back propagation was not developed from the study of
psychological or neural data. One might just as well try explaining data about electrons
using a theory that was developed without regard to how electrons behave. Such a theory
could, at best, explain those relatively uninteresting properties of electrons that are model-
independent, and, hence, could also be explained, in principle, by a very wide class of
alternative models. Such a misapplication of a theory ultimately weakens its case for
acceptance, rather than strengthening it, because the theory must then be justified more
by expert marketing and hyperbole than by its intrinsic merits.
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To advance our understanding of machine intelligence, one need never mention brain
or behavior. But one cannot fail to solve outstanding technological problems. In the
technological domain, a non-biological neural network model like back propagation can
shine, without in the least apologizing for its irrelevance as a brain theory. Moreover,
there need not be one best model for each class of technological problems at any time.
Multiple models can coexist, just as multiple types of automobiles can all simultaneously
be popular in the marketplace.

Diminishing returns set in when a flimsy technological advance is propped up by saying
it works just like the brain, or when a metaphorical brain theory devoid of data implications
is heralded as the next hi-tech sensation. Then the hyperbole buries the science, much as
some AI practitioners have artfully and profitably done, to the ultimate detriment of their
field.

THE INTERNATIONAL NEURAL NETWORK SOCIETY

One good way to clearly distinguish, but still encourage, the very different standards
of biological modelling and of technological modelling in the neural network field is to cre-
ate institutions where both types of activity are equally welcome. From this perspective,
the incorporation on March 16, 1987 of the International Neural Network Society (INNS)
may eventually prove to be an event of enduring historic importance. Indeed, the seven-
teen individuals who came together on June 20, 1987 for the first meeting of the INNS
governing board included distinguished psychologists, neurobiologists, computer scientists,
mathematicians, physicists, and engineers. All of these individuals shared the bond that
they are actively engaged in neural network research. Although each of these individuals
already belonged to established societies that represent one or more of these disciplines,
the full range of neural network research had not previously been supported by any one
established society. The INNS was established to provide a bridge between these estab-
lished societies, and to create a new framework capable of supporting, without confusing
their standards, the full range of biological and technological modelling activitites, inter-
disciplinary knowledge transfers, and cooperative programs that are needed to achieve the
great potential of the neural network field. A remarkable and heartwarming measure that
INNS fills a much needed niche is that there are already more than 1300 INNS members,
with new members joining every day, despite the fact that members began joining only
seven months ago.

The two primary vehicles whereby the fledgling INNS now tangibly supports neural
network research are its official journal Neural Networks, whose first issue came out in
January (call 202-767-1493 for further information), and the INNS annual meeting, whose
first occurrence, welcoming all facets of neural network research from biology through
technology, will take place at the Park Plaza Hotel in Boston on September 6-10, 1988.

A promising sign that the Boston INNS meeting will be a remarkable event is that many
established societies which have become interested in neural network research have gen-
erously agreed to cooperate with INNS in organizing the meeting. Representing societies
whose membership includes a large number of engineers, computer scientists, and physi-
cists are the Computer Society of the IEEE, the IEEE Control Systems Society, the IEEE
Engineering in Medicine and Biology Society, the IEEE Systems, Man and Cybernetics
Society, the Optical Society of America, and the Society of Photo-Optical Instrumentation
Engineers. Mathematicians are represented through the American Mathematical Society
and the Society for Industrial and Applied Mathematics. Psychologists and biologists are
represented through societies such as the Association for Behavior Analysis, the Cognitive
Science Society, the Society for Mathematical Biology, and the Society for the Experi-
mental Analysis of Behavior. This diversity is also reflected in the extraordinary range
of engineers and scientists who will be offering tutorials, symposium and plenary lectures,
contributed oral and poster presentations, and exhibiti .nLi (317-23 7-7931 for information
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about contributing a paper, exhibiting, and registration).

THE ARCHITECTURE IS THE ALGORITHM

How can one intellectually distinguish neural network research from other approaches
to the study of intelligence and control? To fully clarify this issue, one needs to distin-
guish several types of neural network contributions, their mutual relationships, and their
relationships to other research areas. Although full documentation of these distinctions
cannot be developed here, some key points can be made.

First, there exists a continuum of neural network models, from contributions that
compete with a number of alternative research approaches, to contributions for which
neural nets have offered unique approaches for which no competitors yet exist. The latter
type of model represents the truly revolutionary potential of neural network research. But
even in the former type, neural network researchers have contributed new computational
theories and design ideas to the solution of their targeted problems.

In all of these cases, the neural network model represents a natural realization of the
new computational theory. Some people like to summarize this by saying that "the ar-
chitecture is the algorithm." This direct relationship between these new computational
theories and their architectural realizations provides a blueprint to engineers for imple-
menting neural network models in compact, real-time hardware.

MECHANISMS AND MODULES

One way to group neural network contributions is in terms of mechanisms, design
principles, modules, and architectures. Mechanisms include nonlinear differential equations
for fast distributed information processing, also called short term memory (STM) equations
or activation equations; differential equations for slower learning, also called long term
memory (LTM) or adaptive weight equations; and differential equations for processes on an
intermediate time scale, such as habituation or desensitization. Just a few such equations,
and their variations due to specialized parameter choices, form the foundation for most
neural network models. This fact may in the future provide an opportunity for their
systematic fabrication.

A larger number of design principles exist which guide the selection and relationships
among these equations. This selection process amounts to choices of specialized parame-
ters among the small number of general dynamical equations. Design principles help to
identify modular families of models whose members all share aspects of one or more basic
design ideas. These modules include objects called autoassociators, the LMS algorithm,
back propagation (multi-layer LMS networks), instars, competitive learning schemes (com-
petitively interacting instars), outstars, associative pattern learning networks (nonlinearly
interacting arrays of outstars), associative mapping schemes (multi-layer arrays of hier-
archical instar-outstar units in competition), avalanches (temporally organized arrays of
outstars, instars, or reciprocal instar-outstar feedback networks), gated dipole opponent
processors, additive or shunting cooperative-competitive feedack networks, gated dipole
fields (arrays of gated dipoles linked by cooperative-competitive feedback networks), non-
linearly gated diffusive filling-in networks, and so on.

Recently, a number of journals have published special issues about neural networks
that include many recent research developments and applications of such modules. These
include the December 1, 1987 issue of Applied Optics; the January 1988, April 1988, and
subsequent issues of Neural Networks; and the March 1988 issue of Computer magazine.
Some books published within the past two years with illustrative applications are the
two PDP books edited by James McClelland and David Rumelhart (MIT Press, 1986),
the book edited by John Denker called Neural Networks for Computing (American
Institute of Physics, 1986), and the books that I edited called The Adaptive Brain
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kElsevier/North-Holland, 1987) and Neural Networks and Natural Intelligence (MIT
ress, 1988). A remarkably extensive work, containing approximately 500 contributions,

is the four-volume conference proceedings edited by Charles Butler and Maureen Caudill
for the IEEE meeting on neural networks that was held in San Diego in June, 1987 (order
from IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854). Then there is the July
1987 NASA Survey of Artificial Neural Systems, edited by Dan Greenwood, that abstracts
hundreds of recent contributions to the field.

THE HISTORICAL ORDERING OF DESIGN IDEAS

One of the most striking sociological facts about the recent progress of neural network
research is that new practitioners of the field have tended to rediscover these modules
in the approximate order in which they were originally discovered and developed over
the past few decades. In the last five years, for example, a new wave of interest has
focussed first on autoassociator models, then LMS and multi-level LMS models, then on
competitive learning models, and now is rapidly applying variations of the avalanche model.
The most interesting aspect of this for me personally is that the modules among this list
that I helped to pioneer, such as autoassociators, competitive learning, and avalanches-
along with colleagues such as Shun-ichi Amari, James Anderson, Leon Cooper, Kunihiko
Fukushima, Teuvo Kohonen, and Christoph von der Malsburg-were often found hard to
read, obscure, and generally difficult to understand when they were first dicovered. Now
that social conditions are right for assimilating the design intuitions that went into these
discoveries, they seem so self-evident and elementary that many people find it hard to
understand what a major intellectual struggle went into their original discovery. Even
the use of nonlinear differential equations to express such computational ideas was once
regarded with bafflement, derision, and scorn.

PICTURE THE EMERGENT DYNAMICS

This fact may be helpful to engineers who may at first find it hard to read some of
the neural network research that represents the cutting edge of advanced design ideas. As
before, the problem now is not with writing style or even mathematical technique. The
problem is to intuitively grasp the novel design concepts that underly a new module or
architecture. Such design ideas are, at bottom, what make neural networks unique. People
would not have any difficulty reading advanced neural network research if it was simply a
way of packaging old ideas in new network realizations.

A good part of the difficulty has always derived from the key fact that "the architecture
is the algorithm." One cannot simply read a list of rules to understand a neural network.
The list of rules for the network is just a handful of differential equations. Although
these equations provide a complete formal description of the network, they do not provide
a functional understanding of the network, because the functional units which govern
the architecture's problem-solving competence are emergent properties due to nonlinear
interactions across the network.

To intuitively understand such a network one thus needs to grasp the relationship
between the network's formal description and its emergent functional properties. I have
been picturing the vibrant emergent dynamics of nonlinear neural networks for so long
in my mind that I am occasionally shocked, especially when I am particularly tired and
the picture momentarily fades, to realize how empty and meaningless such equations can
seem, despite their formal rigor and completeness, to people who have not yet learned to
think intuitively and pictorially about them.

9;12*1



ARCHITECTURES FOR REAL-TIME INDIVIDUAL ADAPTIVE
RESPONSE TO NONSTATIONARY ENVIRONMENTS

Neural network architectures typically join together several modules in a carefully
crafted circuit. The most advanced architectures are aimed at achieving maximal flezibility
and autonomy for providing general-purpose solutions to modal problem.. I will illustrate
what I mean by these remarks by sketching how my colleagues and I at the Center for
Adaptive Systems (CAS) at Boston University go about developing such architectures.

The CAS carries out two types of theoretical activities which, although conceptually
independent, have turned out to be mutually reinforcing in our case. One type of activity
studies the fundamental design principles and mechanisms needed to explain and predict
large data bases about brain and behavior. The other type of activity generates novel
architectures for implementation as intelligent machines in technological applications. Why
does the type of research done at CAS lend itself to both biological and technological
applications? This research has proved to be relevant to technology both because of the
types of problems we study and the methods that we use to solve them.

In particular, we study problems requiring real-time adaptive responses of individuals
to unexpected changes in complex environments. These are the types of problems that
humans and mammals need to solve in order to survive. These are also among the types
of technological problems that traditional scientific and engineering approaches have not
already well-handled.

Our methods for attacking such problems are systematic and rigorous. We typically be-
gin by analysing a huge interdisciplinary data base concerning brain and behavior within
a prescribed problem area. In our work on developing a neural network architecture
for preattentive vision, for example, we have studied data from many parts of the vi-
sion literature-data about boundary completion, texture segmentation, surface percep-
tion, depth perception, motion perception, illusory figures, stabilized images, hyperacuity,
brightness and color paradoxes, multiple scale filtering, and neurophysiology and anatomy
from retina to prestriate cortex. Only through the sustained analysis of many hundreds
or even thousands of such experiments can one accumulate enough data constraints to
discard superficial modelling ideas and to discern a small number of fundamental design
principles and circuits.

Such concepts do not make themselves known however, through a purely bottom-up
shifting among huge heaps of data. They come into view by thinking about how these data
could arise as emergent, or interactive, properties of a real-time process engaged moment-
by-moment by the external visual environment. Being able to think in real-time about an
immense mass of static data is an art. It is, I believe, the rate-limiting skill in this sort
of work. Thus these real-time processes gradually become discernable through the active
confrontation of a huge data mass with known theoretical principles, mechanisms, and
computations about real-time neural network processes to test for matches and mismatches.
Through this approach, a series of design paradoxes, or trade-offs, come into view which .

balance many data and computational requirements against one another. Gradually the
accumulated impact of these design tradeoffs creates such an intense intellectual pressure
within the emerging scheme of ideas that every fact and hypothesis ramifies through it PI,
with multiple implications. By this point, a well-defined family of real-time neural network 1'

architectures has usually come into view, supported by a new computational theory that
is often quite invisible to a merely passive compilation of the data.

We develop and test these architectures using rigorous mathematical techniques and
systematic parametric series of computer simulations in order to gain a complete formal
understanding of their emergent, or interactive, properties. The combination of working
on problems for which both biology and technology need answers, and developing these
answers into rigorously characterized computational structures, makes such work equally

.~~ ~ ~ ~ ~ . . e11



applicable to quantitative data analysis and to efficient technology transfer.
This rigorous approach has led to real-time neural network: architectures that provide

explicit examples of intelligent systems which overcome classical bottlenecks in stability,
adaptability, scalability, capacity, and speed that have hampered the further development
of AI algorithms. The demonstrations which guarantee these properties take the form
of rigorous mathematical theorems and parametric computational analyses which have
provided a firm foundation upon which software and hardware applications may confidently
be supported.

GENERAL PURPOSE SOLUTIONS TO MODAL PROBLEMS

What kind of problem can such a neural network architecture solve? Each architec-
ture is being developed to supply a general-purpose solution within a focussed problem
domain-what has been called a solution of a modal problem. A modal architecture is less
general than a general-purpose digital computer but much more general than a typical AI
algorithm.

The areas in which such modal neural network architectures are being developed in-
clude:

perception, notably innovations in biological and machine vision and speech, with
applications to multidimensional image filtering, fusion, segmentation, completion, articu-
latory-to-auditory priming, automatically gain-controlled working memory, and self-scaling
adaptive coding;

cognitive information processing, including new architectures for invariant adap-
tive pattern recognition, nonstationary hypothesis testing, self-adjusting parallel memory
search, distributed decision-making under risk, and automatic reallocation of attention
resources;

cognitive-emotional interactions, including architectures for rapidly focussing at-
tention on environmental events and hypotheses which predict behavioral success based
upon prior satisfaction of internal constraints, as in the action of rewards, punishments,
homeostatic rhythms, or the unexpected nonoccurrence of expected goals; and

goal-oriented motor control and robotics, including architectures which circum-
vent classical combinatorial explosions to show how invariant properties of flexible eye and
arm trajectories can be generated as emergent real-time properties of nonlinear neural
interactions, rather than as explicitly pre-planned commands, and how self-calibration of
movement command parameters can be learned automatically after partial accidents or
other unexpected environmental feedback.

Although each of these projects can, at least in part, be carried out independently, they
can also collectively benefit from efficiencies of cooperation, interfacing, and scale if they
are organized as part of a coordinated research program aimed at the design of intelligent

m c oi 
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machines capable of autonomous adaptive real-time operation in unanticipated environ-
mental situations. Interdisciplinary institutes such as CAS provide be type of research

" core around which such larger coordinated projects can effectively be planned. INore of

this type of coordination may very well be a next step in the institutional development of
our field.

* A NEURAL NETWORK ARCHITECTURE
FOR PREATTENTIVE VISION

Nly colleagues Michael Cohen, Ennio Mingolla., DeJan Todorov-., and I have, for ex-
ample, been developing a neural network architoctre for general-purpose preattent've
vi.icn. 'Many Al algorithms for moachie visicn aa',-v.-en ) ,. scaiized for ap'I.ca-
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of information-for example, boundary, disparity, curvature, shading, or spatial frequency
information. Moreover, such algorithms typically use different computational schemes to
analyse each distinct type of information, so that unification into a single general-purpose
vision algorithm is difficult at best. For such Al algorithms, other types of signals are often
contaminants, or noise elements, rather than cooperative sources of ambiguity-reducing
information. Unfortunately, most realistic scenes contain partial information of several
different types in each part of a scene.

In contrast, when we humans gaze upon a scene, our brains rapidly combine several
different types of locally ambiguous visual information to generate a globally consistent
and unambiguous representation of form-and-color-in-depth. This state of affairs raises the
question: What new computational principles and mechanisms are needed to understand
how multiple sources of visual information cooperate automatically to generate a percept
of 3-dimensional form?
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Figure 1. A Glass pattern: The emergent circular pattern is "recognized," although it is
not "seen," as a pattern of differing contrasts.

The CAS vision architecture clarifies how scenic data about boundaries, textures, shad-
ing, depth, multiple spatial scales, and motion can be cooperatively synthesized in real-time
into a coherently fused representation of 3-dimensional form. Moreover, it has become clear
through collaborative work with colleagues at M.I.T. Lincoln Laboratory that the same
processes which are useful to automatically process visual data from human sensors are
equally valuable for processing noisy multidimensional data from artificial sensors, such as
laser radars. These processes are called emergent segmentation and featural filling-in. The
inability of alternative theories to mechanistically understand these processes has been a
major bottleneck in the development of quantitative visual theory and computer vision
applications.
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Figure 2. Macrocircuit of monocular and binocular interactions within the Boundary
Contour System (BCS) and the Feature Contour System (FCS): Left and right monocular
preprocessing stages (MPL and MPR) send parallel monocular inputs to the BCS (boxes
with vertical lines) and the FCS (boxes with three pairs of circles). The monocular BCSL
and BCSR interact via bottom-up pathways labelled 1 to generate a coherent binocular
boundary segmentation. This segmentation generates output signals called filling-in gen-
erators (FIGs) and filling-in barriers (FIBs). The FIGs input to the monocular syncytia of
the FCS. The FIBs input to the binocular syncytia of the FCS. Inputs from the MP stages
interact with FIGs at the monocular syncytia to selectively generate binocularly consistent
Feature Contour signals along the pathways labelled 2 to the binocular syncytia. These
monocular Feature Contour signals interact with FIB signals to generate a multiple scale
representation of form-and-color-in-depth within the binocular syncytia.
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Figure 3. Circuit diagram of the Boundary Contour System: Inputs activate oriented
masks of opposite direction-of-contrast which cooperate at each position and orientation
before feeding into an on-center off-surround interaction. This interaction excites like- S
orientations at the same position and inhibits like-orientations at nearby positions. The
affected cells are on-cells within a gated dipole field. On-cells at a fixed position corn-
pete among orientations. On-cells also inhibit off-cells which represent the same position
and orientation. Off-cells at each position, in turn, compete among orientations. Both 6

on-cells and off-cells are tonically active. Net excitation of an on-cell excites a similarly L
oriented cooperative receptive field of a bipole cell at a location corresponding to that of
the on-cell. Net excitation of an off-cell inhibits a similarly oriented cooperative receptive
field of a bipole cell at a location corresponding to that of the off-cell. Thus, bottom-up
excitation of a vertical on-cell, by inhibiting the horizontal on-cell at that position, disin-
hibits the horizontal off-cell at that position, which in turn inhibits (almost) horizontally
oriented cooperative receptive fields that include its position. Sufficiently strong net posi-
tive activation of both receptive fields of a cooperative cell enables it to generate feedback
via an on-center off-surround interaction among like-oriented cells. On-cells which receive
the most favorable combination of bottom-up signals and top-down signals generate the
emergent perceptual grouping.
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The difficulties inherent in computationally understanding biological vision can be ap-
preciated by considering the following example. Consider the visual image that is depicted
below, called a Glass pattern (Figure 1). When we view such a Class !,_tftern, we see
many black dots on white paper, but we also recognize circular groupings, which are of-
ten called emergent segmentations. For most individuals, these circula:- groupings do not
generate brightnesses or colors that differ significantly from the background. Thus there
is a profound difference between seeing and recognizing, and we can sometimes recognize
groupings that we cannot see. This state of affairs raises the interesting question: If we
can recognize things that we cannot see, then why do we bother to see?

In order to computationally understand such labile relationships between recognized
emergent segmentations and seen brightnesses, the theory shows that there exist fundamen-
tal limitations of the visual measurement process-that is, newly discovered uncertainty
principles are just as important in vision as they were in providing a foundation for quan-
tum mechanics. The theory analyses how the nervous system as a whole can compensate
for these uncertainties using both parallel and hierarchical stages of neural processing.
Thus the nervous system is designed to achieve heterarchical compensation for uncertain-
ties of measurement, and these particular compensations lead to qualitatively new designs
of automatic vision machines.

Figure 2 provides a macrocircuit of the CAS vision architecture. Each box in the figure
includes one or more layered nonlinear neural networks. Figure 3 schematizes one of the
major subsystems of the theory, called the Boundary Contour System, which automatically
generates a form-sensitive emergent boundary segmentation of a scene. The BC System
operates autonomously using nonparametric, internally regulated nonlinear feedback loops.
It is thus quite unlike stochastic relaxation techniques, such as simulated annealing, which
rely on the independent, external manipulation of a noise parameter and predetermined
probability distributions to regulate convergence to equilibrium. Consequently, stochastic
relaxation techniques can sharpen expected properties of an image, but they are unable to
simulate a key property needed for designing a general-purpose vision preprocessor: The
automatic discovery of emergent image groupings that may never have been experienced
before, such as the circular groupings among the dots of the Glass pattern in Figure 1.

SELF-ORGANIZING PATTERN CLASSIFIER: ART I AND 2

Output patterns from an autonomous vision preprocessor get fed as inputs into an
autonomous self-organizing pattern classifier, called an Adaptive Resonance Theory (or
ART) circuit. I originally introduced ART in 1976 as a cognitive theory aimed at answering
the following basic question about autonomous behavior, called the stability-plasticity
dilemma.

How can a learning system be designed to remain plastic, or adaptive, in response to
significant events, yet also remain stable in response to irrelevant events? How does the
system know how to switch between its stable and its plastic modes to achieve stability
without rigidity and plasticity without chaos? In particular, how do we continue to learn
new things without being forced to forget everything we ever learned before? Moreover,how does a system accomplish this balancing act without using a teacher? Tli,:s, Adaptive
Resonance Theory was introduced to help explain how humans and animals can learn, on
their own, to cope so well with a world of seemingly endless richness and complexity whose
rules can change unexpectedly.

The theory has provided mechanistically precise answers to such fundamental questions
as:

Why do we pay attention? Why do we learn expectations about the world? In partic-
ular, how do we cope so well with unexpected events, and how do we manage to do so as
well as we do when we are on our own, and do not have a teacher as a guide? How do we
spontaneously discover, test., and learn hypotheses abc "" " an avcr-changing world? How do
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ART 1 ATTENTIONAL ORIENTING

SUBSYSTEM SUBSYSTEM

Gain 2 gated dipole field

STM F2  F2 reset

! I 1/1 LTM +-

+ +
,4 SrTM F

input

Figure 4. A typical ART 1 architecture. Rectangles represent fields where STM patterns
are stored. Semicircles represent adaptive filter pathways and arrows represent paths
which are not adaptive. Filled circles represent gain control nuclei, which sum input
signals. Their output paths are nonspecific in the sense that at any given time a uniform
signal is sent to all nodes in a receptor field. Gain control at F and F2 coordinates STM
processing with input presentation rate. The orienting subsystem generates a reset wave
to F2 when sufficiently large mismatches between bottom-up and top-down patterns occur
at Fl. This reset wave selectively and enduringly inhibits previously active F2 cells until
the input is shut off, and triggers an automatic hypothesis testing cycle that searches for
an appropriate code for the input pattern.
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Figure 5. A typical ART 2 architecture. Open arrows indicate specific patterned inputs to

target nodes. Filled arrows indicate nonspecific gain control inputs. The gain control nuclei

(large filled circles) nonspecifically inhibit target nodes in proportion to the L 2-norm of

STM activity in their source fields. As in ART 1, gain control (not shown) coordinates STM

processing with input presentation rate. The hemi-disks signify the location of adaptive

LTM traces.



TABLE 1

ART Architecture Alternative Learning Properties

Real-time (on-line) learning Lab-time (off-line) learning

Nonstationary world Stationary world

Self-organizing (unsupervised) Teacher supplies correct answer (supervised)

Memory self-stabilizes in response Capacity catastrophe in response

to arbitrarily many inputs to arbitrarily many inputs

Effective use of full memory capacity Can only use partial memory capacity

a Maintain plasticity in an unexpected Externally shut off plasticity
world to prevent capacity catastrophe

Learn internal top-down expectations Externally impose costs

Active attentional focus regulates Passive learning
learning

Slow or fast learning Slow learning or oscillation catastrophe

Learn in approximate-match phase Learn in mismatch phase

Use self-regulating hypothesis testing Use noise to perturb system out of
to globally reorganize the energy local minima in a fixed energy
landscape landscape

* Fast adaptive search for best match Search tree

Rapid direct access to codes of Recognition time increases with
: familiar events code complexity

Variable error criterion (vigilance Fixed error criterion in response
parameter) sets coarseness of recognition to environmental feedback

acode in response to environmental
feedback

All properties scale to arbitrarily large Key properties deteriorate as system
system capacities capacity is increased
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we know what combinations of facts are useful for dealing with a given situation and what
combinations of facts are irrelevant? How do we recognize familiar facts so quickly even
though we may know many other things? How do we join together knowledge about the
external world with information about our internal needs to quickly make decisions that
have a good chance of satisfying these needs? Finally, what do all of these properties have
in common?

My colleague Gail Carpenter and I have developed two generations of ART architec-
tures, called ART 1 and ART 2. ART 1 (Figure 4) is a neural network architecture that
self-organizes a stable pattern recognition code in response to arbitrary sequences of bi-
nary input patterns. ART 2 (Figure 5) self-organizes stable pattern recognition codes in
response to arbitrary sequences of analog (including binary) input patterns. The guarantee
of being able to learn a pattern recognition code in response to arbitrary input sequences
shows that these ART systems provide a general purpose solution to a modal problem,
and opens the possibility of using them or their decendents in autonomous machines which
may safely be confronted by an unexpected, nonstationary pattern sequence while on the
job. Table 1 outlines some of the differences between properties of ART architectures
and a variety of alternative approaches to pattern recognition, such as back propagation,
simulated annealing, or rule-based systems.

Within such an ART architecture, the process of adaptive pattern recognition is a
special case of the more general cognitive process of hypothesis discovery, testing, search,
classification, and learning. This latter property opens the possibility of applying ART sys-
tems to more general problems of adaptively processing large abstract information sources
and data bases.

These vision preprocessor and ART autonomous classifier examples are just two of
the many neural network architectures now being developed by engineers and scientists
worldwide. Some of them provide a fertile ground for gaining a new understanding of bio-
logical intelligence. Others suggest novel computational theories with natural realizations
as real-time adaptive neural network architectures with promising properties for tackling
some of the outstanding problems in computer science and technology today. Still others
do both. Whatever the focus, here is a field ready to challenge and reward the sustained
efforts of a wide variety of gifted people.
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